
Cardiac Activation Mapping using
Physics-Informed Neural Networks
Incorporating Wave Propagation

Dynamics

Mohamed A. M. Gad1, Mazen A. A. Atlam1, Anas M. A. Elsheikh1,

Sherif Elgendy1, Ahmed Abdelghafar1

Under the supervision of Dr. Ahmed S. A. Mohamed2

Systems and Biomedical Engineering Department
Faculty of Engineering

Cairo University

1Department of Systems and Biomedical Engineering, Faculty of Engineering, Cairo University
2Department of Engineering Mathematics and Physics, Faculty of Engineering, Cairo University



Abstract

Atrial fibrillation (AF) is the most common heart ar-
rhythmia, affecting millions worldwide. Diagnosis and
treatment of AF often involves creating electro-anatomic
activation maps, which represent the timing of tissue ac-
tivation across the heart’s atria. Current mapping meth-
ods use interpolation techniques like linear or Gaussian
process regression based on sparse electrode data col-
lected within the atria. However, these techniques suffer
from noise from electrode positioning and lack of prior
physical knowledge of cardiac wave propagation, lead-
ing to suboptimal diagnostic accuracy. To address these
challenges, we propose a physics-informed neural net-
work (PINN) for cardiac activation mapping that incor-
porates the underlying wave propagation dynamics of
cardiac electrical activity. Benchmarking against tradi-
tional interpolation and Gaussian process regression, the
PINN model demonstrated improved diagnostic accu-
racy, paving the way for improved procedural efficiency
and patient outcomes in atrial fibrillation diagnostics.

1 Introduction

Atrial fibrillation is the most common arrhythmia in the
heart, affecting between 2.7 and 6.1 million people in
the United States alone[1]. A standard procedure to di-
agnose and treat atrial fibrillation is the acquisition of
electrical activation maps, where a catheter is inserted
into the cardiac chamber and the electrode at the tip
records the activation time of the tissue at a given loca-
tion. This process is repeated at multiple sites to cover
the entire atrium.
A study[2] identified the optimal sampling densities

required for accurate activation mapping across vary-
ing levels of complexity, emphasizing the need for higher
measurement densities in complex scenarios. These mea-
surements are then interpolated to create a complete
electro-anatomic map of the chamber. The most com-
mon approach to interpolate the data is to use linear
functions[2, 3] or radial basis functions (RBF)[4]. Unlike
traditional methods relying on linear functions, A study
[3] proposed an approach that uses Gaussian Markov
random fields to account for observation errors and pro-
vide probabilistic local activation time (LAT) maps. The
RBF algorithm accurately reconstructed wave propaga-
tion patterns in simulated tissues with homogeneous and
heterogeneous conduction properties, consistently with
the data access afforded by clinical practice. These pre-
liminary results suggest the possible integration of the
method with clinically used mapping systems to favor
the identification of specific propagation patterns and
conduction disturbances. However, the two approaches
do not incorporate the underlying physics of electrical
wave propagation, focusing instead on statistical inter-

polation and error quantification. This can result in un-
realistic interpolations with artificially high conduction
velocities.

A strategy[5] incorporating the underlying physics of
cardiac activity enables accurate and scalable ECG simu-
lations by decoupling the computationally intensive lead-
field calculation from the subsequent simulation process.
This approach is more efficient than full-torso solutions
for larger datasets, demonstrating how physics-based
modeling can streamline computational workflows while
preserving realism in heart simulations. However, this
study’s strategy assumes a constant conduction velocity
field, which limits its applicability. Furthermore, no rec-
ommendations are provided for acquiring new measure-
ments to reduce procedure time and improve accuracy.

In this paper, we propose a physics-informed neural
network for cardiac activation mapping that accounts
for the underlying wave propagation dynamics and ad-
dresses the limitations of the previously mentioned tech-
niques.

2 Problem Definition

Cardiac activation mapping begins with clinicians using
electrodes to measure the electrical activation times at
specific points on the heart’s surface. However, these
data often contain gaps due to spatial limitations, par-
ticularly in regions such as fibrotic tissue with slow con-
duction. Traditional methods that interpolate these gaps
fail to account for the underlying physics, leading to in-
accuracies and unrealistic conduction velocities.

The electrical activation map of the heart can be re-
lated to a traveling wave, where the wavefront repre-
sents the location of the depolarizing cells[6]. The time
at which cells depolarize is referred to as the activation
time and corresponds to an increase in transmembrane
potential above a certain threshold and the initiation of
the cell contraction. The activation times of the traveling
wave must satisfy the Eikonal equation[7, 8]:

∥∇T (x)∥2 =
1

V (x)

The cardiac activation time T (x) represents the activa-
tion time at a spatial point x in the domain. It is the
time at which the cardiac tissue at x depolarizes. The
conduction velocity V (x) denotes the local conduction
velocity, the speed at which the electrical wave prop-
agates through the cardiac tissue at x. Physically, it
depends on properties such as tissue conductivity and
anisotropy. The activation time gradient ∇T (x) repre-
sents the direction and steepness of the wavefront at x.
The magnitude of the activation time gradient ∥∇T (x)∥
indicates the rate at which the activation time changes
rapidly at x.
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3 Methodology

Physics-Informed Neural Networks (PINNs) approxi-
mate solutions to partial differential equations (PDEs)
by embedding the PDE residual and boundary condi-
tions into the network’s training process[9, 10]. For a
PDE written in a residual form as F (x, t, ux, ut, . . . ) = 0
over a domain Ω with initial condition u(x, t0) = u0(x)
and Dirichlet boundary condition u(x, t) = uΓ(t), the
solution u(x, t) is approximated by a feedforward neu-
ral network ûθ(x, t). The network has layers of neurons,
nonlinear activations, and trainable weights and biases
(θ). The input consists of spatio-temporal coordinates
(x, t), while the output approximates u(x, t). Automatic
differentiation enables machine-precision computation of
derivatives within the PDE, offering a flexible frame-
work for higher-dimensional systems or complex bound-
ary conditions.
Training a PINN involves minimizing a composite loss

function[9, 10], L(θ), which balances contributions from
data, boundary conditions, and the PDE residual itself.
The loss terms Ldata, Lb, and LF are calculated from
data points, boundary conditions, and collocation points,
respectively, using mean squared error. Weighting fac-
tors (ωdata, ωb, ωF ) adjust the relative importance of
these terms. Optimization is achieved through gradi-
ent descent, commonly using the Adam optimizer, with
automatic differentiation facilitating efficient and precise
computation of gradients with respect to θ. This process
iteratively refines the network to approximate the solu-
tion by minimizing L(θ), leveraging libraries like Tensor-
Flow or PyTorch for implementation.
To enforce the Eikonal equation[7, 8] within the frame-

work of the Physics-Informed Neural Network (PINN),
a residual form is defined:

R(x) := V (x)∥∇T (x)∥ − 1 = 0

This residual measures the deviation of the predicted
values from the physical constraints described by the
Eikonal equation. Minimizing this residual ensures the
solution adheres to the underlying wave propagation dy-
namics. After defining the Eikonal equation, we approx-
imate both the activation time T (x) and conduction ve-
locity V (x) as:

T (x) ≈ NNT (x, θT ),

V (x) ≈ NNV (x, θV ),

where NNT and NNV are neural networks with param-
eters θT and θV , respectively, that need to be trained
to obtain accurate approximations. Since the conduc-
tion velocity is strictly positive and bounded within a
physiological range, we pass the output of the last layer
through a sigmoid function σ, ensuring the conduction
velocity neural network reads:

V (x) = Vmax · σ(NNV (x))

where Vmax represents the maximum conduction velocity
specified by the user. Finally, we define the loss function
used to train the model:

L(θT , θV ) =
1

NT

NT∑
i=1

(
T (xi)− T̂i

)2

+
1

NR

NR∑
i=1

R(xi)
2

+ αTV
1

NR

NR∑
i=1

∥∇V (xi)∥+ αL2

Nθ∑
i=1

θ2T,i,

Figure 1 illustrates the first two terms of the loss func-
tion: the first term ensures that the neural network’s out-
put aligns with the NT activation time measurements,
denoted as T̂i. The second term enforces that the net-
work outputs satisfy the Eikonal equation at NR collo-
cation points. The third term, evaluated at the NR col-
location points, serves as a total variation regularization
for the conduction velocity, allowing for discrete jumps
in the solution. This is particularly beneficial for mod-
eling slow conduction regions, such as fibrotic patches.
Finally, the fourth term applies L2 regularization to the
weights of the activation time neural network, enhanc-
ing generalization and preventing overfitting. We solve
the following minimization problem to train the neural
networks and determine the optimal parameters:

arg min
θT ,θV

L(θT , θV ).

All models are implemented in TensorFlow[11] and
optimized using the TensorFlow ADAM optimizer[12]
with default parameters and a learning rate of 0.001.
To improve computational efficiency, we use a mini-
batch implementation, selecting subsets of data points
to compute the loss function and its gradient. For lower-
dimensional problems, data points are randomly sam-
pled using a Latin hypercube design[13], while for higher-
dimensional problems, data is divided into batches, with
each batch processed iteratively. This approach ensures
efficient handling of large datasets during optimization.

4 Results

To evaluate the effectiveness of the proposed physics-
informed neural network (PINN) framework, we de-
signed a synthetic benchmark problem where the acti-
vation times and conduction velocity analytically satisfy
the Eikonal equation. This benchmark allowed us to as-
sess the method’s ability to capture complex wave prop-
agation dynamics, such as discontinuities in conduction
velocity and collisions of wavefronts.

The benchmark problem was defined over a two-
dimensional domain, with activation times given by:

T (x, y) = min
(√

x2 + y2, 0.7
√

(x− 1)2 + (y − 1)2
)
,

2



Figure 1: Physics-informed neural networks for activation mapping. We use two neural networks to approximate
the activation time T and the conduction velocity V.

and conduction velocity V (x, y) defined as:

V (x, y) =

{
1.0 if

√
x2 + y2 < 0.7

√
(x− 1)2 + (y − 1)2,

1.0
0.7 otherwise.

These functions represent two distinct regions of con-
duction velocity with a collision of wavefronts in the do-
main x, y ∈ [0, 1]. Figure 2, top left, illustrates the
exact mapping of activation times, and Figure 2, bot-
tom left, shows the exact mapping of conduction velocity
profile. We generate N = 50 samples with a Latin hy-
percube design and train our model. We only have data
on the activation times, and we predict both the activa-
tion times and the conduction velocity. The results were
compared against three other methods; A neural net-
work without physics constraints, Gaussian process re-
gression[14, 15], and Linear interpolation. In the linear
interpolation case, we use the scatteredInterpolant

function from MATLAB with linear extrapolation[2].

The PINN outperformed all baseline methods in both
activation time and conduction velocity predictions.
Figure 2 displays the results, highlighting the PINN’s
ability to accurately capture the wavefront collision and
regions of distinct conduction velocities. In contrast, the
neural network without physics and Gaussian process re-
gression failed to represent the discontinuity in conduc-
tion velocity, resulting in unrealistic gradients. Similarly,

linear interpolation produced artifacts highly dependent
on the location of the training points.

Quantitatively, Table 1 summarizes the root mean
squared error (RMSE) for activation times and the mean
absolute error (MAE) for conduction velocity. We use
the root mean squared error (RMSE) for the activa-
tion times and the mean absolute error (MAE) for the
conduction velocity. We make this distinction to avoid
the artificially high errors that will be reported in the
root-mean squared error near the discontinuity of con-
duction velocity. The PINN achieved significantly lower
errors compared to the baseline methods, particularly in
regions near the wavefront collision where the physics-
based regularization proved critical.

we evaluate the performance of all four methods to
noise. We introduce Gaussian noise with a standard
deviation of 1, 5, and 10% of the maximum value of
activation time and run all methods 30 times with the
same datasets. Table 1, second, third, and fourth row,
summarizes the results. We can see that the physics-
informed neural network outperforms other methods, ex-
cept for the 5% noise case in the activation times the
Gaussian process regression outperforms PINNs. For the
conduction velocity, the physics-informed neural network
performs better in all cases by a large margin. Gaussian
process regression is as robust to noise as our approach,
with similar levels of error for the activation times. Re-
markably, the adding physics to the neural network re-
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Noise Quantity PINN Neural network Gaussian process Linear

0% T (RMSE) 0.49 0.48 1.56 2.05

V (MAE) 3.56 9.07 57.78 17.98

1% T (RMSE) 1.91 (1.09–3.09) 4.19 (2.74–7.93) 1.92 (1.48–2.57) 2.23 (1.97–2.56)

V (MAE) 10.24 (6.09–17.86) 63.93 (42.74–91.12) 54.08 (47.82–67.72) 27.37 (21.49–40.13)

5% T (RMSE) 3.42 (2.22–5.34) 11.00 (6.90–18.42) 3.34 (2.63–4.13) 4.44 (3.58–5.76)

V (MAE) 15.84 (10.40–23.20) 87.33 (68.19–128.83) 78.87 (53.77–102.81) 66.30 (42.97–171.79)

10% T (RMSE) 6.70 (3.75–10.60) 18.25 (12.84–33.39) 6.73 (3.54–11.65) 8.55 (6.02–11.55)

V (MAE) 23.16 (10.81–40.78) 90.09 (78.46–119.42) 96.78 (50.49–177.69) 81.06 (59.86–241.80)

Table 1: Performance of physics-informed neural network (PINN), neural network without physics, Gaussian
process regression, and linear interpolation in the presence of noise. The root mean squared error (RMSE) for the
activation times is normalized by 1 ms and the mean absolute error (MAE) for the conduction velocity is normalized
by 1 m/s. Errors are presented as mean and range.

Figure 2: Benchmark problem activation times and conduction velocities. The top row shows the activation
times, the bottom row the conduction velocity. The columns display the exact solution and the results of the
physics-informed neural network (PINN), a neural network without physics, the Gaussian process regression, and
the linear interpolation. The black circles indicate the sampling locations.

duces the error in both activation time and conduction
velocity.

These results demonstrate that the incorporation of
wave propagation physics into neural network training
enables more accurate and physically consistent predic-
tions of cardiac activation mapping compared to tradi-
tional methods.
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5 Conclusion and Future Work

In this work, we introduced a novel framework for cardiac
activation mapping using Physics-Informed Neural Net-
works (PINNs) to solve the Eikonal equation governing
wave propagation in cardiac tissue. By embedding the
principles of cardiac electrophysiology directly into the
neural network architecture, our method predicts activa-
tion times and conduction velocities with high precision,
offering a direct, reliable alternative to conventional es-
timation techniques.

A notable strength of our methodology is its ability
to accurately model the dynamics of wavefront propaga-
tion, including complex scenarios such as wavefront col-
lisions. This capability marks a significant improvement
over traditional approaches, which often fail to represent
such interactions accurately.

Our findings suggest that the proposed methodology
can have far-reaching implications for cardiac electro-
physiology. By directly predicting conduction veloci-
ties and activation times, it eliminates intermediate ap-

proximations, leading to more accurate and physiolog-
ically meaningful maps. Moreover, the computational
efficiency of our model makes it suitable for integration
into existing clinical workflows, even when using moder-
ately powerful hardware.

Despite its promise, our methodology has some limi-
tations. For instance, it does not currently account for
anisotropy in cardiac tissue [6, 16] in activation time
measurements. Future work will aim to address these
limitations by incorporating fiber orientation data and
incorporating uncertainty quantification methods. Ad-
ditionally, while our results demonstrate strong perfor-
mance on synthetic data, further validation on real clin-
ical data, particularly for complex arrhythmias, remains
an essential next step.

In summary, our study demonstrates the potential of
PINNs for cardiac electrophysiology, offering a robust
and efficient tool for activation mapping. We believe
this approach will significantly benefit the diagnosis and
treatment of patients with cardiac arrhythmia, paving
the way for faster, more accurate clinical interventions.
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